The Polythermal CuGaSe₂–Cu₈GeSe₆ Section of the Quasiternary Cu₂Se-Ga₂Se₃–GeSe₂ System

by I.D. Olekseyuk, O.M. Strok and O.F. Zmiy

Department of Inorganic and Physical Chemistry, Volyn' State University, Voli av. 13, Lutsk 43009, Ukraine

(Received February 12th, 2001; revised manuscript June 5th, 2001)

The polythermal $CuGaSe_2-Cu_8GeSe_6$ section has been constructed using differential thermal, X-ray and microstructural analyses. It has been established that this section is a quasibinary one only in the subsolidus part. The ranges of the solid solutions have been determined.

Key words: DTA, polythermal section, ternary phase, peritectic reaction

The CuGaSe₂–Cu₈GeSe₆ section belongs to the Cu₂Se–Ga₂Se₃–GeSe₂ system, which has not been studied so far. It is interesting, because it is formed by compounds with valuable semiconducting properties. The interactions in the Cu₂Se–Ga₂Se₃ system have been reported in [1–3] but the diagrams differ from each other. As a result of these investigations the existence of the ternary CuGaSe₂ compound has been confirmed. This compound is formed by the peritectic reaction L + $\gamma \Leftrightarrow$ CuGaSe₂ at 1323 K [1,2] or 1313 K [3]. CuGaSe₂ crystallizes in the chalcopyrite structure [4,5], space group I42d with lattice parameters *a* = 0.5614 nm, *c* = 1.1022 nm [4] or *a* = 0.5596 nm, *c* = 1.1004 nm [5].

The investigations of the phase equilibria in the Cu₂Se–GeSe₂ system have been carried out in [6–9]. They differ from each other in the character of the Cu₂GeSe₃ formation and in the composition of the other phase (Cu₈GeSe₆ or Cu₆GeSe₅). The Cu₂Se–GeSe₂ phase diagram in 15–60 mol.% GeSe₂ concentration interval has been constructed in [9]. The existence of two ternary phases: Cu₂GeSe₃ and Cu₈GeSe₆ has been confirmed. Cu₂GeSe₃ melts congruently at 1053 K. The formation of Cu₈GeSe₆ corresponds to the peritectic process L + Cu₂Se \Leftrightarrow Cu₈GeSe₆ at 1083 K. The polymorphic transformations of this phase have been observed at 983 and 333 K.

The crystal structure of both polymorphic modifications can be found in [6, 10–12]. Both the low-temperature (α -Cu₈GeSe₆) and the high-temperature (β -Cu₈GeSe₆) modifications are hexagonal, space group *P*6₃*cm* and *P*6₃*mc* respectively. The lattice parameters are summarized in Table 1.

Compound -	Lattice pa	Deferences		
Compound	<i>a</i> , nm	<i>c</i> , nm	Kelefences	
α-Cu ₈ GeSe ₆	1.249	1.167	[6]	
	1.2632	1.1758	[10]	
	1.2648(5)	1.176(4)	[11]	
	1.26438(2)	1.17570(1)	[12]	
β-Cu ₈ GeSe ₆	0.728	1.167	[6]	
,	0.7632	1.1782	[10]	
	0.73164(4)	1.17679(7)	[12]	

Table 1. Lattice	parameters f	or Cu ₈	GeSe ₆ .
------------------	--------------	--------------------	---------------------

EXPERIMENTAL

23 samples in the field 0–100 mol. % Cu₈GeSe₆ were synthesized to construct the polythermal CuGaSe₂–Cu₈GeSe₆ section (Table 2). Samples were prepared from pure elements (Se 99.999 wt.%, Ga 99.9997 wt.%, Ge 99.9994 wt.%, Cu 99.99 wt.%) using the method of direct high temperature synthesis in evacuated to 1.3×10^{-4} hPa quartz ampoules. The highest temperature was 1420 K. Annealing took place at 820 K during 250 hours. Samples obtained in this way were investigated using differential thermal, microstructural and X-ray analyses.

	Phase composition (mol.%)		Thermal effects (K)			
№						
	CuGaSe ₂	Cu ₈ GeSe ₆	liquidus	subliquidus	solidus	subsolidus
1.	100	0	1373	_	1333	_
2.	99	1	1348	_	1293	1023
3.	97	3	1343	1328 1293	_	1023
4.	96	4	1340	1310	1043	_
5.	95	5	1330	1293	_	1028
6.	92.5	7.5	1310	1303	1038	_
7.	80	20	1268	1058	1043	973
8.	73	23	1258	1073	1043	_
9.	70	30	1213	_	1043	983
10.	65	35	1203	1073	1048	983
11.	60	40	1183	1068	_	_
12.	55.5	44.5	1173	_	1048	983
13.	45	55	1148	1053	_	983
14.	40	60	1138	1053	_	973
15.	35	65	1103	_	1043	983
16.	30	70	_	1073	1048	983
17.	25	75	1083	1068	_	983
18.	20	80	1073	1068	-	985
19.	15	85	1073	1068	_	983
20.	10	90	1078	1068	-	983
21.	5	95	1098	1073	-	958
22.	0	100	1108	_	1078	973

Table 2. DTA results of CuGaSe₂-Cu₈GeSe₆ system samples.

RESULTS AND DISCUSSION

As far as $CuGaSe_2$ and Cu_8GeSe_6 form by peritectic reactions [1–3, 6–9], the CuGaSe₂-Cu₈GeSe₆ section is not a quasibinary one in the full concentration and temperature ranges (Fig. 1). Due to the situation in the quasiternary Cu₂Se–Ga₂Se₃–GeSe₂ system, it crosses three surfaces of primary phase crystallization: solid solutions on the basis of γ -phase (the curve *ab*); the curve *bc* corresponding to the δ -solid solutions on the basis of CuGaSe₂ and the curve *cd* corresponding to the primary crystallization of Cu₂Se. Subliquidus consists of three fields of secondary phase crystallization: L+ γ + δ (ebf), L+Cu₂Se+ δ (gch), L+Cu₂Se+ ϵ (*jhi*). The peritectic process L+ γ \Leftrightarrow CuGaSe₂ corresponds to the beginning of the secondary falling of CuGaSe₂ (the line *eb*). As far as the CuGaSe₂–Cu₈GeSe₆ section is connecting one in the quasiternary Cu₂Se-Ga₂Se₃-GeSe₂ system, so one- and three-phase fields coexist on the lines ef and ij. Solidus is presented by the lines: ef and ij, which correspond to the finishing of the secondary crystallizations of $L + \gamma + CuGaSe_2$ and $L + Cu_2Se + \varepsilon$ respectively; fg, which corresponds to the limited δ -solid solutions; and by the horizontal gi of the nonvariant peritectic process $L + Cu_2Se \Leftrightarrow \delta + \varepsilon$ at 1043 K. The peritectoid transformation $\delta + \varepsilon \Leftrightarrow \beta$ takes place at 983 K.

Figure 1. The polythermal CuGaSe₂–Cu₈GeSe₆ section of the quasiternary Cu₂Se–Ga₂Se₃–GeSe₂ system: $1-L, 2-L+\gamma, 3-L+\gamma+\delta, 4-\delta, 5-L+\delta, 6-L+Cu_2Se, 7-L+Cu_2Se+\delta, 8-L+Cu_2Se+\epsilon, 9-\epsilon, 10-\delta+\epsilon, 11-\epsilon+\beta, 12-\beta, 13-\delta+\beta; O$ – one-phase samples, \bullet –two-phase samples.

Using X-ray and microstructural analyses the solubility on the basis of the components has been determined. δ -Solid solutions on the basis of CuGaSe₂ reach ~5 mol.% Cu₈GeSe₆ at the temperature of nonvariant transformation (1043 K) and decrease with decreasing temperature to 2.5 mol.% Cu₈GeSe₆ at the annealing temperature. Within the range of δ -solid solutions, the lattice parameters change from a = 0.5588(1) nm, c = 1.0981(6) nm for CuGaSe₂ to a = 0.5604(1) nm, c = 1.1005(4) nm for an extreme composition (Fig. 2). The diffractogram of the Cu₈GeSe₆ compound has been indexed in the space group $P6_3cm$ with the lattice parameters a = 1.2579(5) nm, c = 1.1692(6) nm, what agrees well with the literature data corresponding to the low-temperature modification. The solubility on the basis of Cu₈GeSe₆ reaches up to 5 mol.% CuGaSe₂ at the peritectoid temperature. The change of the lattice parameters varies from a = 1.2579(5) nm and c = 1.1692(6) nm for Cu₈GeSe₆ to a = 1.2644(5) nm, c = 1.1744(6) nm for 5 mol.% CuGaSe₂ (Fig. 2). All samples between 3–96 mol.% Cu₈GeSe₆ form two-phases at the annealing temperature.

Figure 2. Plots of the lattice parameters of the solid solutions in the $CuGaSe_2-Cu_8GeSe_6$ section at 820 K.

REFERENCES

- 1. Palatnik L.S. and Belova E.K., Izv. Akad. Nauk USSR. Neorg. Mater., 3, 967 (1967).
- 2. Palatnik L.S. and Belova E.K., Izv. Akad. Nauk USSR. Neogr. Mater., 3, 2194 (1967).
- 3. Mikkelsen J.C., J. Electron. Mat., 10, 541 (1981).
- 4. Mandel L., Tomlinson R.D. and Hampshire M.J., J. Appl. Cryst., 10, 130 (1977).
- 5. Abrahams S.C. and Bernstein J.L., J. Chem. Phys., 61, 1140 (1974).
- 6. Carcaly C., Chezean N., Rivet J. and Flahaut J., Bull. Soc. Chim., France, 4, 1192 (1973).
- 7. Zotova T.K. and Karagodin Yu.A., *Collections of scientific paper on microelectronic problems*, *Moscow*, 1975 (in Russian).
- Rogatchova E.P., Melihova A.N. and Panasenko N.M., *Izv. Akad. Nauk SSSR. Neorg. Mater.*, 5, 839 (1975).
- 9. Piskach L.V., Parasyuk O.V. and Romanyuk Ya.E., J. Alloys Comp., 299, 227 (2000).
- 10. Gotz D., Behruzi M. and Hahn Th., XII Europ. Cryst. Meeting, Moscow, 2, 71 (1989).
- 11. Jaulmes S., Julien-Pouzol M., Laruelle P. and Rivet J., Acta Cryst., 41, 1799 (1991).
- 12. Onoda M., Ishii M., Pattison P., Shibata K., Yamamoto A. and Shapuis G., *J. Solid State Chem.*, **146**, 355 (1999).