The Polythermal CuGaSe₂–Cu₈GeSe₆ Section of the Quasiternary Cu2Se-Ga2Se3–GeSe2 System

by I.D. Olekseyuk, O.M. Strok and O.F. Zmiy

Department of Inorganic and Physical Chemistry, Volyn' State University, Voli av. 13, Lutsk 43009, Ukraine

(Received February 12th, 2001; revised manuscript June 5th, 2001)

The polythermal $CuGaSe₂-Cu₈GeSe₆$ section has been constructed using differential thermal, X-ray and microstructural analyses. It has been established that this section is a quasibinary one only in the subsolidus part. The ranges of the solid solutions have been determined.

Key words: DTA, polythermal section, ternary phase, peritectic reaction

The CuGaSe₂–Cu₈GeSe₆ section belongs to the Cu₂Se–Ga₂Se₃–GeSe₂ system, which has not been studied so far. It is interesting, because it is formed by compounds with valuable semiconducting properties. The interactions in the $Cu₂Se–Ga₂Se₃$ system have been reported in [1–3] but the diagrams differ from each other. As a result of these investigations the existence of the ternary $CuGaSe₂$ compound has been confirmed. This compound is formed by the peritectic reaction $L + \gamma \Leftrightarrow CuGaSe_2$ at 1323 K [1,2] or 1313 K [3]. CuGaSe₂ crystallizes in the chalcopyrite structure [4,5], space group I42d with lattice parameters $a = 0.5614$ nm, $c = 1.1022$ nm [4] or $a = 0.5596$ nm, $c = 1.1004$ nm [5].

The investigations of the phase equilibria in the $Cu₂Se-GeSe₂$ system have been carried out in [6–9]. They differ from each other in the character of the Cu_2GeSe_3 formation and in the composition of the other phase ($Cu₈GeSe₆$ or $Cu₆GeSe₅$). The $Cu₂Se-GeSe₂ phase diagram in 15–60 mol.% GeSe₂ concentration interval has been$ constructed in [9]. The existence of two ternary phases: Cu_2GeSe_3 and Cu_8GeSe_6 has been confirmed. Cu₂GeSe₃ melts congruently at 1053 K. The formation of Cu₈GeSe₆ corresponds to the peritectic process $L + Cu_2 Se \Leftrightarrow Cu_8GeSe_6$ at 1083 K. The polymorphic transformations of this phase have been observed at 983 and 333 K.

The crystal structure of both polymorphic modifications can be found in [6, 10–12]. Both the low-temperature (α -Cu₈GeSe₆) and the high-temperature (β -Cu₈GeSe₆) modifications are hexagonal, space group $P6₃cm$ and $P6₃mc$ respectively. The lattice parameters are summarized in Table 1.

EXPERIMENTAL

23 samples in the field 0–100 mol. % $Cu₈GeSe₆$ were synthesized to construct the polythermal CuGaSe₂–Cu₈GeSe₆ section (Table 2). Samples were prepared from pure elements (Se 99.999 wt.%, Ga 99.9997 wt.%, Ge 99.9994 wt.%, Cu 99.99 wt.%) using the method of direct high temperature synthesis in evacuated to 1.3×10^{-4} hPa quartz ampoules. The highest temperature was 1420 K. Annealing took place at 820 K during 250 hours. Samples obtained in this way were investigated using differential thermal, microstructural and X-ray analyses.

	Phase composition $(mod .\%)$		Thermal effects (K)			
N_2						
	CuGaSe ₂	Cu ₈ GeSe ₆	liquidus	subliquidus	solidus	subsolidus
1.	100	$\mathbf{0}$	1373		1333	
2.	99	1	1348		1293	1023
3.	97	3	1343	1328 1293		1023
4.	96	$\overline{4}$	1340	1310	1043	
5.	95	5	1330	1293		1028
6.	92.5	7.5	1310	1303	1038	
7.	80	20	1268	1058	1043	973
8.	73	23	1258	1073	1043	$\overline{}$
9.	70	30	1213		1043	983
10.	65	35	1203	1073	1048	983
11.	60	40	1183	1068		$\overline{}$
12.	55.5	44.5	1173	\equiv	1048	983
13.	45	55	1148	1053		983
14.	40	60	1138	1053		973
15.	35	65	1103		1043	983
16.	30	70		1073	1048	983
17.	25	75	1083	1068		983
18.	20	80	1073	1068		985
19.	15	85	1073	1068		983
20.	10	90	1078	1068		983
21.	5	95	1098	1073		958
22.	$\mathbf{0}$	100	1108		1078	973

Table 2. DTA results of CuGaSe₂–Cu₈GeSe₆ system samples.

RESULTS AND DISCUSSION

As far as CuGaSe₂ and Cu₈GeSe₆ form by peritectic reactions [1–3, 6–9], the $CuGaSe₂-Cu₈GeSe₆ section is not a quasibinary one in the full concentration and$ temperature ranges (Fig. 1). Due to the situation in the quasiternary $Cu_2Se-Ga_2Se_3-GeSe_2$ system, it crosses three surfaces of primary phase crystallization: solid solutions on the basis of γ -phase (the curve *ab*); the curve *bc* corresponding to the δ -solid solutions on the basis of CuGaSe₂ and the curve *cd* corresponding to the primary crystallization of Cu2Se. Subliquidus consists of three fields of secondary phase crystallization: L+ γ + δ (*ebf*), L+Cu₂Se+ δ (*gch*), L+Cu₂Se+ ϵ (*jhi*). The peritectic process L+ $\gamma \Leftrightarrow$ CuGaSe₂ corresponds to the beginning of the secondary falling of CuGaSe₂ (the line eb). As far as the CuGaSe₂–Cu₈GeSe₆ section is connecting one in the quasiternary $Cu_2Se-Ga_2Se_3-GeSe_2$ system, so one- and three-phase fields coexist on the lines *ef* and *ij*. Solidus is presented by the lines: *ef* and *ij*, which correspond to the finishing of the secondary crystallizations of $L + \gamma + CuGaSe_2$ and $L + Cu_2Se + \varepsilon$ respectively; *fg*, which corresponds to the limited δ -solid solutions; and by the horizontal *gi* of the nonvariant peritectic process $L + Cu_2Se \Leftrightarrow \delta + \varepsilon$ at 1043 K. The peritectoid transformation $\delta + \varepsilon \Leftrightarrow \beta$ takes place at 983 K.

Figure 1. The polythermal CuGaSe₂–Cu₈GeSe₆ section of the quasiternary Cu₂Se–Ga₂Se₃–GeSe₂ system: $1 - L$, $2 - L + \gamma$, $3 - L + \gamma + \delta$, $4 - \delta$, $5 - L + \delta$, $6 - L + Cu_2Se$, $7 - L + Cu_2Se + \delta$, $8 - L + Cu_2Se$ $+ \epsilon$, $9 - \epsilon$, $10 - \delta + \epsilon$, $11 - \epsilon + \beta$, $12 - \beta$, $13 - \delta + \beta$; \bigcirc – one-phase samples, \bigcirc – two-phase samples.

Using X-ray and microstructural analyses the solubility on the basis of the components has been determined. δ -Solid solutions on the basis of CuGaSe₂ reach \sim 5 mol.% Cu₈GeSe₆ at the temperature of nonvariant transformation (1043 K) and decrease with decreasing temperature to 2.5 mol.% $Cu₈GeSe₆$ at the annealing temperature. Within the range of δ -solid solutions, the lattice parameters change from $a =$ 0.5588(1) nm, $c = 1.0981(6)$ nm for CuGaSe₂ to $a = 0.5604(1)$ nm, $c = 1.1005(4)$ nm for an extreme composition (Fig. 2). The diffractogram of the $Cu₈GeSe₆$ compound has been indexed in the space group $P6_3cm$ with the lattice parameters $a = 1.2579(5)$ nm, *c* =1.1692(6) nm, what agrees well with the literature data corresponding to the low-temperature modification. The solubility on the basis of $Cu₈GeSe₆$ reaches up to $5 \text{ mol.}\%$ CuGaSe₂ at the peritectoid temperature. The change of the lattice parameters varies from $a = 1.2579(5)$ nm and $c = 1.1692(6)$ nm for Cu₈GeSe₆ to $a = 1.2644(5)$ nm, $c = 1.1744(6)$ nm for 5 mol.% CuGaSe₂ (Fig. 2). All samples between $3-96$ mol.% $Cu₈GeSe₆$ form two-phases at the annealing temperature.

Figure 2. Plots of the lattice parameters of the solid solutions in the CuGaSe₂–Cu₈GeSe₆ section at 820 K.

REFERENCES

- 1. Palatnik L.S. and Belova E.K., *Izv. Akad. Nauk USSR. Neorg. Mater*., **3**, 967 (1967).
- 2. Palatnik L.S. and Belova E.K., *Izv. Akad. Nauk USSR. Neogr. Mater*., **3**, 2194 (1967).
- 3. Mikkelsen J.C., *J. Electron. Mat.*, **10**, 541 (1981).
- 4. Mandel L., Tomlinson R.D. and Hampshire M.J., *J. Appl. Cryst*., **10**, 130 (1977).
- 5. Abrahams S.C. and Bernstein J.L., *J. Chem. Phys*., **61**, 1140 (1974).
- 6. Carcaly C., Chezean N., Rivet J. and Flahaut J., *Bull. Soc. Chim*., *France*, **4**, 1192 (1973).
- 7. Zotova T.K. and Karagodin Yu.A.,*Collections of scientific paper on microelectronic problems*, *Moscow*, 1975 (in Russian).
- 8. Rogatchova E.P., Melihova A.N. and Panasenko N.M., *Izv. Akad. Nauk SSSR. Neorg. Mater.*, 5, 839 (1975).
- 9. Piskach L.V., Parasyuk O.V. and Romanyuk Ya.E., *J. Alloys Comp*., **299**, 227 (2000).
- 10. Gotz D., Behruzi M. and Hahn Th., *XII Europ. Cryst. Meeting, Moscow*, **2**, 71 (1989).
- 11. Jaulmes S., Julien–Pouzol M., Laruelle P. and Rivet J., *Acta Cryst*., **41**, 1799 (1991).
- 12. Onoda M., Ishii M., Pattison P., Shibata K., Yamamoto A. and Shapuis G., *J. Solid State Chem*., **146**, 355 (1999).